
Enhancing Skills Data in Canada

Connecting "big data" with traditional sources of LMI

International Labour Organisation, Skills and Employability Branch 19 September 2019

- 1 Who we are
- 2 Motivation and objective
- 3 Approaches for mapping skills to occupations
- 4 Challenges
- 5 Conclusion

Who We Are

- (1) Who we are
- (2) Motivation and objective
- 3 Approaches for mapping skills to occupations
- 4 Challenges
- **5** Conclusion

Bridging the gap between skills and occupations

Skills data gap identified

Education level/type used as proxy

Linking skills to occupations


- Learning from others (O*NET, ESCO)
- Exploring new techniques with big data

Will publish data and analyses

- LFS data linked to skills and downloadable
- Report methodological details and ongoing updates

A Canadian Skills and Competencies Taxonomy

- (1) Who we are
- (2) Motivation and objective
- (3) Approaches for mapping skills to occupations
- 4 Challenges
- **5** Conclusion

A phased approach

LMICIMT LABOUR MARKET INFORMATION COUNCIL
CONSEIL DE L'INFORMATION SUR LE MARCHÉ DU TRAVAIL

Mapping to be guided by 7 Criteria

Criteria	Description
Flexible	Responds to changing labour market conditions and captures emerging skills.
Sustainable and cost effective	Adequate resources to maintain and update the mapping
Representative	Reflects the different ways people express skill requirements
Granular	Greater specificity of skills and occupation-specific data
Responsive	Enables better informed decisions about skills training and education
Measurable	Allows for reasonable measurement of skills
Statistically sound	Estimated skill levels representative of labour markets

Mapping approaches being explored

Potential Approaches	Examples	Advantages	Drawbacks
Consult occupational experts	O*NET	 High quality linkages to well- defined skills taxonomy Standardized review process ensures consistency 	 Slow adaptation to emerging skills Unnatural skills language
Survey workers directly	O*NET	Obtain "front line" knowledgeLinkages to skills taxonomy of choice	 Requires expert vetting / validation Risk of misunderstanding Closed vs open-ended questions
Leverage web-scraped data	Nesta, LinkedIn	 Draws on large pool of data Natural language in job postings Responsive to emerging skills Inexpensive to maintain 	 Requires vetting / validation Skewed market segment Inconsistency of skills language Omission of implied skills
Hybrid of the above		 Balance natural vs consistent skills language 	Expensive to maintain

LMICIMT LABOUR MARKET INFORMATION COUNCIL CONSEIL DE L'INFORMATION SUR LE MARCHÉ DU TRAVAIL

Nature of Skill-Occupation linkage

Importance and level ratings (O*NET)

O*NET: 1 = not important

2 = somewhat important

3 = important

4 = Very important

5 = Extremely important

Binary classification (ESCO)

ESCO: "essential" or "non-essential"

Alternatives?

Approach 1: Job analysts

Example: O*NET and US SOC codes: 19-3011 ("Economists")

Skill		Importance	Level
1.	Critical thinking	78	64
2.	Mathematics	78	61
3.	Reading comprehension	78	68
4.	Active listening	75	57
5.	Judgement and decision making	75	57
6.	Speaking	75	61
7.	Writing	75	61
8.	Active learning	72	57
9.	Complex problem solving	72	59

Skill		Importance	Level
10.	Instructing	63	45
11.	Systems analysis	60	55
12.	Systems evaluation	56	57
13.	Learning strategies	53	50
14.	Monitoring	53	52
15.	Coordination	50	45
16.	Persuasion	50	52
17.	Service orientation	50	41
18.	Time management	50	43

LMICIMT LABOUR MARKET INFORMATION COUNCIL CONSEIL DE L'INFORMATION SUR LE MARCHÉ DU TRAVAIL

Approach 1: Considerations

• Complexity: Leveraging O*NET taxonomy of skills requires translation into local occupational categories

• Limited: O*NET taxonomy is fixed (35 unique skills)

• Slow responsiveness: 100 occupations updated per year

Approach 2: Web scraping

Example: Vicinity Jobs NOC code 4162 (Economists, etc.)

Item		Туре	Incidence
1.	Communication skills	skill	53%
2.	Teamwork	skill	47%
3.	English language	Work requirement	38%
4.	Forecasting	Work requirement	34%
5.	Data Analysis	Work requirement	22%
6.	Decision making	Skill	19%
7.	EViews	Work requirement	9%
8.	Writing	Skill	6%
9.	MATLAB	Work requirement	3%

Approach 2: Considerations

 Measure: Incidence in job postings does not equal level of importance or frequency of requirements

Complexity: Translating to rigorous skills taxonomies challenging

- (1) Who we are
- (2) Motivation and objective
- (3) Approaches for mapping skills to occupations
- 4 Challenges
- **5** Conclusion

Challenges to web-scraped skills mapping

- Linking natural language on skills to formal taxonomy
- Distinguishing between "skills" and "work requirements"
- Capturing implicit skills
- Lack of equally comprehensive supply-side data

Considerations for emerging economies

- How to factor in informal economy
- Online job postings even more skewed/not representative
- Possibility to leverage existing skills taxonomies
- Employment data by occupation less timely and frequent, making it difficult to assess robustness of online postings
- Consider different weighting of various approaches, e.g. job postings given less prominence

- (1) Who we are
- (2) Motivation and objective
- (3) Approaches for mapping skills to occupations
- (4) Challenges
- (5) Conclusion

Conclusion

- Official data sources lack skills information: education ≠ skills!
- Online job postings represent a rich new source of information
- Linking skills with occupations enables leveraging of existing labour market information (e.g., LFS, Census)
- Older linkage approaches still relevant, but can be enhanced with new "big data"
- Challenges remain, including representativeness of online data and how to optimally connect the "right" skills taxonomy to occupations

Questions?

